3.119 \(\int \frac{\cos ^2(c+d x)}{(b \sec (c+d x))^{3/2}} \, dx\)

Optimal. Leaf size=98 \[ \frac{10 \sqrt{\cos (c+d x)} \text{EllipticF}\left (\frac{1}{2} (c+d x),2\right ) \sqrt{b \sec (c+d x)}}{21 b^2 d}+\frac{10 \sin (c+d x)}{21 b d \sqrt{b \sec (c+d x)}}+\frac{2 b \sin (c+d x)}{7 d (b \sec (c+d x))^{5/2}} \]

[Out]

(10*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[b*Sec[c + d*x]])/(21*b^2*d) + (2*b*Sin[c + d*x])/(7*d*(b
*Sec[c + d*x])^(5/2)) + (10*Sin[c + d*x])/(21*b*d*Sqrt[b*Sec[c + d*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.0721163, antiderivative size = 98, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 4, integrand size = 21, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.19, Rules used = {16, 3769, 3771, 2641} \[ \frac{10 \sqrt{\cos (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right ) \sqrt{b \sec (c+d x)}}{21 b^2 d}+\frac{10 \sin (c+d x)}{21 b d \sqrt{b \sec (c+d x)}}+\frac{2 b \sin (c+d x)}{7 d (b \sec (c+d x))^{5/2}} \]

Antiderivative was successfully verified.

[In]

Int[Cos[c + d*x]^2/(b*Sec[c + d*x])^(3/2),x]

[Out]

(10*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[b*Sec[c + d*x]])/(21*b^2*d) + (2*b*Sin[c + d*x])/(7*d*(b
*Sec[c + d*x])^(5/2)) + (10*Sin[c + d*x])/(21*b*d*Sqrt[b*Sec[c + d*x]])

Rule 16

Int[(u_.)*(v_)^(m_.)*((b_)*(v_))^(n_), x_Symbol] :> Dist[1/b^m, Int[u*(b*v)^(m + n), x], x] /; FreeQ[{b, n}, x
] && IntegerQ[m]

Rule 3769

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(Cos[c + d*x]*(b*Csc[c + d*x])^(n + 1))/(b*d*n), x
] + Dist[(n + 1)/(b^2*n), Int[(b*Csc[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1] && Integer
Q[2*n]

Rule 3771

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rubi steps

\begin{align*} \int \frac{\cos ^2(c+d x)}{(b \sec (c+d x))^{3/2}} \, dx &=b^2 \int \frac{1}{(b \sec (c+d x))^{7/2}} \, dx\\ &=\frac{2 b \sin (c+d x)}{7 d (b \sec (c+d x))^{5/2}}+\frac{5}{7} \int \frac{1}{(b \sec (c+d x))^{3/2}} \, dx\\ &=\frac{2 b \sin (c+d x)}{7 d (b \sec (c+d x))^{5/2}}+\frac{10 \sin (c+d x)}{21 b d \sqrt{b \sec (c+d x)}}+\frac{5 \int \sqrt{b \sec (c+d x)} \, dx}{21 b^2}\\ &=\frac{2 b \sin (c+d x)}{7 d (b \sec (c+d x))^{5/2}}+\frac{10 \sin (c+d x)}{21 b d \sqrt{b \sec (c+d x)}}+\frac{\left (5 \sqrt{\cos (c+d x)} \sqrt{b \sec (c+d x)}\right ) \int \frac{1}{\sqrt{\cos (c+d x)}} \, dx}{21 b^2}\\ &=\frac{10 \sqrt{\cos (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right ) \sqrt{b \sec (c+d x)}}{21 b^2 d}+\frac{2 b \sin (c+d x)}{7 d (b \sec (c+d x))^{5/2}}+\frac{10 \sin (c+d x)}{21 b d \sqrt{b \sec (c+d x)}}\\ \end{align*}

Mathematica [A]  time = 0.0905225, size = 66, normalized size = 0.67 \[ \frac{\sqrt{b \sec (c+d x)} \left (40 \sqrt{\cos (c+d x)} \text{EllipticF}\left (\frac{1}{2} (c+d x),2\right )+26 \sin (2 (c+d x))+3 \sin (4 (c+d x))\right )}{84 b^2 d} \]

Antiderivative was successfully verified.

[In]

Integrate[Cos[c + d*x]^2/(b*Sec[c + d*x])^(3/2),x]

[Out]

(Sqrt[b*Sec[c + d*x]]*(40*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2] + 26*Sin[2*(c + d*x)] + 3*Sin[4*(c + d*
x)]))/(84*b^2*d)

________________________________________________________________________________________

Maple [C]  time = 0.184, size = 153, normalized size = 1.6 \begin{align*} -{\frac{2\, \left ( \cos \left ( dx+c \right ) +1 \right ) ^{2} \left ( -1+\cos \left ( dx+c \right ) \right ) }{21\,d \left ( \sin \left ( dx+c \right ) \right ) ^{3} \left ( \cos \left ( dx+c \right ) \right ) ^{2}} \left ( 5\,i{\it EllipticF} \left ({\frac{i \left ( -1+\cos \left ( dx+c \right ) \right ) }{\sin \left ( dx+c \right ) }},i \right ) \sqrt{ \left ( \cos \left ( dx+c \right ) +1 \right ) ^{-1}}\sqrt{{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}}}\sin \left ( dx+c \right ) -3\, \left ( \cos \left ( dx+c \right ) \right ) ^{4}+3\, \left ( \cos \left ( dx+c \right ) \right ) ^{3}-5\, \left ( \cos \left ( dx+c \right ) \right ) ^{2}+5\,\cos \left ( dx+c \right ) \right ) \left ({\frac{b}{\cos \left ( dx+c \right ) }} \right ) ^{-{\frac{3}{2}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^2/(b*sec(d*x+c))^(3/2),x)

[Out]

-2/21/d*(cos(d*x+c)+1)^2*(-1+cos(d*x+c))*(5*I*EllipticF(I*(-1+cos(d*x+c))/sin(d*x+c),I)*(1/(cos(d*x+c)+1))^(1/
2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)-3*cos(d*x+c)^4+3*cos(d*x+c)^3-5*cos(d*x+c)^2+5*cos(d*x+c))/sin
(d*x+c)^3/cos(d*x+c)^2/(b/cos(d*x+c))^(3/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\cos \left (d x + c\right )^{2}}{\left (b \sec \left (d x + c\right )\right )^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^2/(b*sec(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

integrate(cos(d*x + c)^2/(b*sec(d*x + c))^(3/2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{b \sec \left (d x + c\right )} \cos \left (d x + c\right )^{2}}{b^{2} \sec \left (d x + c\right )^{2}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^2/(b*sec(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

integral(sqrt(b*sec(d*x + c))*cos(d*x + c)^2/(b^2*sec(d*x + c)^2), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\cos ^{2}{\left (c + d x \right )}}{\left (b \sec{\left (c + d x \right )}\right )^{\frac{3}{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**2/(b*sec(d*x+c))**(3/2),x)

[Out]

Integral(cos(c + d*x)**2/(b*sec(c + d*x))**(3/2), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\cos \left (d x + c\right )^{2}}{\left (b \sec \left (d x + c\right )\right )^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^2/(b*sec(d*x+c))^(3/2),x, algorithm="giac")

[Out]

integrate(cos(d*x + c)^2/(b*sec(d*x + c))^(3/2), x)